
 ISSN 2348 – 9928
IJAICT Volume 2, Issue 5, May 2015

© 2015 IJAICT (www.ijaict.com)

Corresponding Author: Ms. Anjana Sasidharan, Vivekanandha College of Engineering for Women, Namakkal, Tamilnadu, India. 274

VHDL IMPLEMENTATION OF IEEE 754 FLOATING POINT UNIT

Ms. Anjana Sasidharan
 Student,

Vivekanandha College of Engineering for Women,
Namakkal, Tamilnadu, India.

Mr. M.K. Arun
Electronics Engineer,

 TechnoVision,
Pune, India.

Abstract — IEEE-754 specifies interchange and arithmetic formats
and methods for binary and decimal floating-point arithmetic in
computer programming world. The implementation of a floating-
point system using this standard can be done fully in software, or in
hardware, or in any combination of software and hardware. This
paper propose VHDL implementation of IEEE -754 Floating point
unit .In proposed work the pack, unpack and rounding mode was
implemented using the VHDL language and simulation was verified.

Keywords—IEEE754, Floating Point Unit, Pack, Unpack,
Rounding.

I. INTRODUCTION

The digital arithmetic operations are very important in the
design of digital processors and application-specific systems.
Arithmetic circuits play an important role in digital systems.
With the vast development in the very large scale integration
(VLSI) circuit technology, many complex circuits, have become
easily implementable today[1]. Algorithms that are seemed to be
impossible to implement now have attractive implementation
possibilities for the future. This means that not only the
conventional computer arithmetic methods, but also the
unconventional ones are worth investigation in new designs. The
notion of real numbers in mathematics is convenient for hand
computations and formula manipulations.

However, real numbers are not well-suited for general purpose
computation, because their numeric representation as a string of
digits expressed [2] in, say, base 10 can be very long or even
infinitely long. Examples include π, e, and 1/3. In practice,
computers store numbers with finite precision. Numbers and
arithmetic used in scientific computation should meet a few
general criteria

 Numbers should have minimum storage requirements
 Arithmetic operations should be efficient to carry out
 A level of standardization, or portability, is desirable–

results obtained on one computer should closely
matchthe results of the same computation on other
computers.

1.1 floating Point Numbers

The term floating point is derived from the meaning that there is
no fixed number of digits before and after the decimal point, that
is, the decimal point can float. There was also a representation in
which the number of digits before and after the decimal point is
set, called fixed-point representations [3]. In general floating
point representations are slower and less accurate than fixed-
point representations, but they can handle larger range of
numbers. Floating Point Numbers are numbers that consist of a
fractional part. For e.g. following numbers are the 35, -112.5, ½,
4E-5 etc.

Floating-point arithmetic is considered a tough subject by many
people. This is rather surprising because floating-point is found
in computer systems[4]. Almost every language support a
floating-point data type; computers from PC’s to supercomputers
have floating-point units; most compilers will compile floating-
point algorithms from time to time; and every operating system
must respond to floating-point exceptions such as overflow. A
number representation (called a numeral system in mathematics)
specifies some way of storing a number that may be encoded as a
string of digits. In computing, floating point describes a system
for numerical representation in which a string of digits (or bits)
represents a rational number.

The term floating point refers to the fact that the radix point
(decimal point, or, more commonly in computers, binary point)
can "float"; that is, it can be placed anywhere relative to the
significant digits of the number. This position is indicated
separately in the internal representation, and floating-point
representation can thus be thought of as a computer realization of
scientific notation.

1.2 Floating Point Formats

Several different representations of real numbers have been
proposed, but by far the most widely used is the floating-point
representation. Floating-point representations have a base b

 Doi:01.0401/ijaict.2014.02.20 Published Online 05 (05) 2015

 ISSN 2348 – 9928

Corresponding Author: Ms. Anjana Sasidharan, Vivekanandha College of Engineering for Women, Namakkal, Tamilnadu, India. 275

(which is always assumed to be even) and a precision p. If b =
10 and p= 3 then the number 0.1 is represented as 1.00 × 10^-1.
In general, a floating point number will be represented as ±
d.dd… d × be where d.dd… d is called the Significant and has p
digits. More precisely ± d0 d1 d2 ... dp-1 × be represents the
number. The term floating-point number will be used to mean a
real number that can be represented in the format under
discussion. Two other parameters associated with floating-point
representations are the largest and smallest allowable exponents,
emax and emin. Since there are bp possible significant, and
emax – emin + 1 possible exponents, a floating-point number
can be encoded in bits, where the final +1 is for the sign bit. The
precise encoding is not important for now [5]. There are two
reasons why a real number might not be exactly represented able
as a floating-point number. The most common situation is
illustrated by the decimal number 0.1. Although it has a finite
decimal representation, in binary it has an infinite repeating
representation.
Thus when b = 2, the number 0.1 lies strictly between two
floating-point numbers and is exactly representable by neither of
them. A less common situation is that a real number is out of
range, that is, its absolute value is larger than b × bemax or
smaller than 1.0 × bemin. Floating-point representations are not
necessarily unique. For example, both 0.01 × 101 and 1.00 × 10-
1 represent 0.1. If the leading digit is nonzero, then the
representation is said to be normalized. The floating-point
number 1.00 × 10-1 is normalized, while 0.01 ×101 is not. When
b = 2, p = 3, emin = -1 and emax = 2 there are 16normalized
floatingpoint numbers. The bold hash marks correspond to
numbers whose significand is 1.00. Requiring that a floating-
point representation be normalized makes the representation
unique.

Unfortunately, this restriction makes it impossible to represent
zero! A natural way to represent 0 is with 1.0 × bemin-1, since
this preserves the fact that the numerical ordering of nonnegative
real numbers corresponds to the lexicographic ordering of their
floating-point representations [6]. When the exponent is stored
in a k bit field, that means that only 2k - 1 values are available
for use as exponents, since one must be reserved to 0.Note that
in a Floating Point number is a part of the notation ,and different
from a floating point multiply operation

1.3 Floating point unit

Floating-point units (FPU) colloquially are a math coprocessor
which is designed specially to carry out operations on floating

Point number. Typically FPUs can handle operations like
addition, subtraction, multiplication and division. FPUs can also
perform various transcendental functions such as exponential or
trigonometric calculations, though these are done with software
library routines in most modern processor When a CPU executes
a program that is calling for a floating-point (FP) operation, there
are three ways by which it can carry out the operation. Firstly, it
may call a floating-point unit emulator, which is a floating-point
library, using a series of simple fixed-point arithmetic operations
which can run on the integer ALU.

These emulators can save the added hardware cost of a FPU but
are significantly slow. Secondly, it may use an add-on FPUs that
are entirely separate from the CPU, and are typically sold as
optional add-ons which are purchased only when they are needed
to speed up math-intensive operations [7]. Else it may use
integrated FPU present in the system. The FPU designed by us is
a single precision IEEE754 compliant integrated unit. It can
handle not only basic floating point operations like addition,
subtraction, multiplication and division but can also handle
operations like shifting, square root determination and other
transcendental functions like sine, cosine and tangential function.

1.4 IEEE 754 Standards

IEEE754 standards a technical standard established by IEEE and
the most widely used standard for floating-point computation,
followed by many hardware and software implementations.

Formats
The standard defines five basic formats, named using their base
and the number of bits used to encode them. There are three
binary floating-point formats (which can be encoded using 32,
64, or 128 bits) and two decimal floating-point formats (which
can be encoded using 64 or 128 bits). The first two binary
formats are the ‘Single Precision’ and ‘Double Precision’ formats
of IEEE 754-1985, and the third is often called 'quad'; the
decimal formats are similarly often called 'double' and 'quad.

Single Precision
The most significant bit starts from the left exponent and
mantissa. The storage layout for single precision

 Fig 1 : Single Precision Format

IJAICT Volume 2, Issue 5, May 2015 Doi:01.0401/ijaict.2014.02.20 Published Online 05 (05) 2015

© 2015 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928

Corresponding Author: Ms. Anjana Sasidharan, Vivekanandha College of Engineering for Women, Namakkal, Tamilnadu, India. 276

Double Precision

The double precision format helps overcome the problems of
single precision floating point. Using twice the space, the double
precision format has an 11 bit excess 1023 exponent and a 53 bit
mantissa (with an implied H.O. bit of one) plus a sign bit. This
provides a dynamic range of about 10±308 and 14-1/2 digits of
precision, sufficient for most applications.

Exceptions

The IEEE standard defines seven types of exceptions that should
be signaled through a one bit status flag when encountered. They
are invalid operation, underflow, overflow, inexact, division by
zero, infinity, and zero.

1.5 Rounding mode

Since the result precision is not infinite, sometimes rounding is
necessary. To increase the precision of the result .The standard
defines the following five rounding rules

 Round to the nearest even which rounds to the nearest
value with an even (zero) least significant bit.

 Round to the nearest odd which rounds to the nearest
value above (for positive numbers) or below (for
negative numbers)

 Round towards positive infinity which is a rounding
directly towards a positive infinity and it is also called
rounding up or ceiling.

 Round towards negative infinity which is rounding
directly towards a negative infinity and it is also called
rounding down or floor or truncation.

Guard Digits

One method of computing the difference between two floating-
point numbers is to compute the difference exactly and then
round it to the nearest floating point number. This is very
expensive if the operands differ greatly in size.

II. RELATED WORKS

2.1 Open Floating Point Unit

This was the open source project done by Rudolf Selman. His
FPU described a single precision floating point unit which could

perform add, subtract, multiply, divide, and conversion between
FP number and integer. It consists of two pre-normalization units
that can adjust the mantissa as well as the exponents of the given
numbers, one for addition/subtraction and the other for
multiplication/division operations. . It also has a shared post
normalization unit that normalizes the fraction part. The final
result after post-normalization is directed to a valid result which
is in accordance to single precision FP format. the main
drawback is that most of which written in MATLAB and due to
this is non synthesizable

2.2 GRFPU

This high Performance IEEE754 FPU was designed at Gaisler
Research for the improvement of FP operations of a LEON based
systems. It supports both single precision and double precision
operands. It implements all FP operations defined by the
IEEE754 standard in hardware. All operations are dealt with the
exception of demoralized numbers which are flushed to zero and
supports all rounding modes.

This advanced design combines low latency and high throughput.
The most common operations such as addition, subtraction and
multiplication are fully pipelined which has throughput of one
CC and a latency of three CC. More complex divide and square
root operation takes between 1 to 24 CC to complete and execute
in parallel with other FP operations. It can also perform
operations like converse and compliment. It supports all SPARC
V8 FP instructions. The main drawback of this model is that it is
very expensive and complex to implement practically.

III. PROPOSED WORK

The IEEE (Institute of Electrical and Electronics Engineers) has
produced a Standard to define floating-point representation and
arithmetic the standard brought out by the IEEE come to be
known as IEEE 754. The IEEE 754 Standard for Floating-Point
Arithmetic is the most widely-used standard for floating-point
computation, and is followed by many hardware (CPU and FPU)
and software implementations.

In this paper VHDL implementation of some or all arithmetic is
carried out using IEEE 754 formats and operations. The current
version is IEEE 754-2008, which was published in August 2008;
it includes nearly all of the original IEEE 754-1985 (which was
published in 1985) and the IEEE Standard for Radix-Independent
Floating-Point Arithmetic (IEEE 854-1987.

IJAICT Volume 2, Issue 5, May 2015 Doi:01.0401/ijaict.2014.02.20 Published Online 05 (05) 2015

© 2015 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928

Corresponding Author: Ms. Anjana Sasidharan, Vivekanandha College of Engineering for Women, Namakkal, Tamilnadu, India. 277

The standard specifies:

 Basic and extended floating-point number formats.
 Add, subtract, multiply, divide, square root, remainder,

and compare operations
 Conversions between integer and floating-point

formats.
 Conversions between different floating-point formats.
 Conversions between basic format floating-point

numbers and decimal strings.
 Floating-point exceptions and their handling, including

non numbers when it comes to their precision and
width in bits, the standard defines two groups: basic
and extended format.

3.1 Software used

In this work VHDL implementation of IEEE 754 standard is
used VHDL is a versatile language in which we can effectively
done the coding for pack, unpack and rounding and the synthesis
result are taken using MODEL SIM XE 11 5.7.In this work
coding for pack ,unpack as well s rounding is done a template.
Template allows us to indicate specific byte ordering or word
ordering. This provides us great deal of flexibility when dealing
with external program.

Fig 2 : wave form generated for pack operation

Fig 3 : Wave form generated for unpack function

3.2 Rounding

Simulation result for rounding is shown in the figure. Rounding
operations are somewhat more complicated In addition to
overflow we can have “underflow” Accuracy can be a big
problem – IEEE 754 keeps two extra bits, guard and round for
accurate rounding.

Fig 3 : Waveform generated for rounding

IV. CONCLUSION

Arithmetic unit has been designed to perform Pack, unpack and
rounding arithmetic operations, on floating point numbers. IEEE
754 standard based floating point representation has been used.
The unit has been coded in VHDL. Code has been synthesized on
model sim5.5 and has been implemented and verified on the
board successfully. This standard provides a method for
computation with floating-point numbers that will yield the same
result whether the processing is done in hardware, software, or a
combination of the two. The results of the computation will be
identical, independent of implementation, given the same input
data. Errors, and error conditions, in the mathematical processing
will be reported in a consistent manner regardless of
implementation.

FUTURE SCOPE
The designed arithmetic unit operates on 32-bit operands. It can
be designed for 64- bit operands to enhance precision. It can be
extended to have more mathematical operations like addition,
subtraction, division, square root etc.

References
[1] Muller, J.-M., Elementary Functions: Algorithms and Implementation, 2nd

edition, Chapter 10, ISBN 0-8176-4372-9, Birkhäuser, 2006.

[2] The Unicode Standard, Version 5.0, The Unicode Consortium, Addison-
Wesley Professional, 27October 2006, ISBN 0-321-48091-0.54

IJAICT Volume 2, Issue 5, May 2015 Doi:01.0401/ijaict.2014.02.20 Published Online 05 (05) 2015

© 2015 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2014.02.20 Published Online 05 (05) 2015

Corresponding Author: Ms. Anjana Sasidharan, Vivekanandha College of Engineering for Women, Namakkal, Tamilnadu, India. 278

[3] Stehlé, D., Lefèvre, V., and Zimmermann, P., “Searching worst cases of a
one-variable function”,IEEE Transactions on Computers, 54(3), pp.
340–346, 2005.

[4] Bruguera, J. D., and Lang, T., “Floating-point Fused Multiply-Add:
Reduced Latency for Floating- Point Addition”, Proceedings of the 17th
IEEE Symposium on Computer Arithmetic, ISBN 0-7695-2366-8,pp. 42–
51, IEEE Computer Society, 2005

[5] Cowlishaw, M. F., “Decimal Floating-Point: Algorism for Computers”,
Proceedings of the 16th IEEE Symposium on Computer Arithmetic, ISBN
0-7695-1894-X, pp. 104–111, IEEE Computer Society,2003.

[6] Overton, M. L., Numerical Computing with IEEE Floating Point
Arithmetic, ISBN 0-89871-571-7, Society for Industrial and Applied
Mathematics 2001

[7] Demmel, J. W., and Li., X., “Faster numerical algorithms via exception
handling”, IEEE 1994.

IJAICT Volume 2, Issue 5, May 2015

© 2015 IJAICT (www.ijaict.com)

